skip to main content


Search for: All records

Creators/Authors contains: "Volkovich, Ilya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bojanczy, Mikolaj ; Chekuri, Chandra (Ed.)
    One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence for the average-case hardness of some natural NP-complete problem. In this paper, we make progress on this question by studying a conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows. 1) First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances, then there exist OWFs. 2) Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions. 3) Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of McKTP. Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete problem. In fact, building on recently-announced results of Ren and Santhanam [Rahul Ilango et al., 2021], we show that McKTP is hard-on-average if and only if there are logspace-computable OWFs. 
    more » « less
  2. null (Ed.)
    We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time over general fields and in deterministic polynomial time over and for the following classes: 1) Set-multilinear depth-3 circuits of constant top fan-in ((k) circuits). As a consequence of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors for any d, but is interesting even for d=3. 2) Sums of powers of constantly many linear forms ((k) circuits). As a consequence we obtain the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank symmetric tensors. 3) Multilinear depth-3 circuits of constant top fan-in (multilinear (k) circuits). Our algorithm works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only efficient algorithms known were over polynomially-sized finite fields (see. Karnin-Shpilka 09’). Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic or randomized) for subclasses of (k) circuits that also work over large/infinite fields were for the setting when the top fan-in k is at most 2 (see Sinha 16’ and Sinha 20’). 
    more » « less